Effective Perturbation Methods for One-Dimensional Schrödinger Operators
نویسندگان
چکیده
If V is in L, virtually any perturbation technique allows one to control u (and, in fact, to show that all solutions of (1) are bounded as x → ∞). We are interested in cases where V is not L but is small at infinity in some sense. We want to generalize what has turned out to be a powerful set of tools in case V0 ≡ 0, namely, the use of modified Prüfer equations and their discrete analogs, which were dubbed EFGP equations in [6] on account of contributions of [4, 5, 11]. Explicitly, in the continuum case when V0 ≡ 0 and E = k > 0, one defines R(x), θ(x) by
منابع مشابه
Inverse Scattering Theory for One-dimensional Schrödinger Operators with Steplike Periodic Potentials
We develop direct and inverse scattering theory for one-dimensional Schrödinger operators with steplike potentials which are asymptotically close to different finite-gap periodic potentials on different half-axes. We give a complete characterization of the scattering data, which allow unique solvability of the inverse scattering problem in the class of perturbations with finite second moment.
متن کاملSingular Schrödinger Operators as Self-adjoint Extensions of N-entire Operators
We investigate the connections between Weyl–Titchmarsh– Kodaira theory for one-dimensional Schrödinger operators and the theory of n-entire operators. As our main result we find a necessary and sufficient condition for a one-dimensional Schrödinger operator to be nentire in terms of square integrability of derivatives (w.r.t. the spectral parameter) of the Weyl solution. We also show that this ...
متن کاملInverse Scattering Theory for One-dimensional Schrödinger Operators with Steplike Finite-gap Potentials
We develop direct and inverse scattering theory for one-dimensional Schrödinger operators with steplike potentials which are asymptotically close to different finite-gap potentials on different half-axes. We give a complete characterization of the scattering data, which allow unique solvability of the inverse scattering problem in the class of perturbations with finite second moment.
متن کاملPreservation of the Absolutely Continuous Spectrum of Schrödinger Equation under Perturbations by Slowly Decreasing Potentials and A.e. Convergence of Integral Operators
X iv :m at h/ 96 10 21 6v 1 [ m at h. SP ] 1 O ct 1 99 6 Abstract. We prove new criteria of stability of the absolutely continuous spectrum of one-dimensional Schrödinger operators under slowly decaying perturbations. As applications, we show that the absolutely continuous spectrum of the free and periodic Schrödinger operators is preserved under perturbations by all potentials V (x) satisfying...
متن کاملFourier Method for One Dimensional Schrödinger Operators with Singular Periodic Potentials
By using quasi–derivatives, we develop a Fourier method for studying the spectral properties of one dimensional Schrödinger operators with periodic singular potentials.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1998